New 3D-Printing Material and Fastest High Precision Printer Create Human Body-Like Micro-Environment
UpNano printers and resins for macroscopic test specimens. Superior properties compared to conventional resin-based 3D printing. Vienna, Austria, 22 February 2024 – For the first time, mechanical properties of 2PP 3D-fabricated bulk specimens in the mm to cm range have been tested using established standardized methods. This breakthrough was made possible by combining the use of the fastest commercially available 2PP 3D-printer (NanoOne) with resins that can be processed at very high volumetric build rates, enabling upscaling. The test results, now published in "Advanced Materials", demonstrate the superior material quality of the UpPhoto and UpDraft resins compared to an acrylate resin (ETA/TTA). In addition, both materials are fully cured immediately after printing, eliminating the need for post-treatment. A multinational collaboration involving researchers from Technical University Vienna (TU Wien), California Institute of Technology (Caltech) and the RWTH Aachen University, along with materials experts from UpNano GmbH conducted the comprehensive study.
Tilt Compensation Maximizes Precision in 2PP 3D-Printing
UpNano printers and resins for macroscopic test specimens. Superior properties compared to conventional resin-based 3D printing. Vienna, Austria, 22 February 2024 – For the first time, mechanical properties of 2PP 3D-fabricated bulk specimens in the mm to cm range have been tested using established standardized methods. This breakthrough was made possible by combining the use of the fastest commercially available 2PP 3D-printer (NanoOne) with resins that can be processed at very high volumetric build rates, enabling upscaling. The test results, now published in "Advanced Materials", demonstrate the superior material quality of the UpPhoto and UpDraft resins compared to an acrylate resin (ETA/TTA). In addition, both materials are fully cured immediately after printing, eliminating the need for post-treatment. A multinational collaboration involving researchers from Technical University Vienna (TU Wien), California Institute of Technology (Caltech) and the RWTH Aachen University, along with materials experts from UpNano GmbH conducted the comprehensive study.
Fresh Capital Boosts Innovation and Use in Serial Production
UpNano printers and resins for macroscopic test specimens. Superior properties compared to conventional resin-based 3D printing. Vienna, Austria, 22 February 2024 – For the first time, mechanical properties of 2PP 3D-fabricated bulk specimens in the mm to cm range have been tested using established standardized methods. This breakthrough was made possible by combining the use of the fastest commercially available 2PP 3D-printer (NanoOne) with resins that can be processed at very high volumetric build rates, enabling upscaling. The test results, now published in "Advanced Materials", demonstrate the superior material quality of the UpPhoto and UpDraft resins compared to an acrylate resin (ETA/TTA). In addition, both materials are fully cured immediately after printing, eliminating the need for post-treatment. A multinational collaboration involving researchers from Technical University Vienna (TU Wien), California Institute of Technology (Caltech) and the RWTH Aachen University, along with materials experts from UpNano GmbH conducted the comprehensive study.
European Innovation Leader in 2PP 3D-Printing Tackles US-Market
UpNano printers and resins for macroscopic test specimens. Superior properties compared to conventional resin-based 3D printing. Vienna, Austria, 22 February 2024 – For the first time, mechanical properties of 2PP 3D-fabricated bulk specimens in the mm to cm range have been tested using established standardized methods. This breakthrough was made possible by combining the use of the fastest commercially available 2PP 3D-printer (NanoOne) with resins that can be processed at very high volumetric build rates, enabling upscaling. The test results, now published in "Advanced Materials", demonstrate the superior material quality of the UpPhoto and UpDraft resins compared to an acrylate resin (ETA/TTA). In addition, both materials are fully cured immediately after printing, eliminating the need for post-treatment. A multinational collaboration involving researchers from Technical University Vienna (TU Wien), California Institute of Technology (Caltech) and the RWTH Aachen University, along with materials experts from UpNano GmbH conducted the comprehensive study.
Co-innovation of Bioink and Powerful 2Photon Bio-Printer Allows 3D-Printing of Living Cells for Bioapplications with Unprecedented Precision
UpNano printers and resins for macroscopic test specimens. Superior properties compared to conventional resin-based 3D printing. Vienna, Austria, 22 February 2024 – For the first time, mechanical properties of 2PP 3D-fabricated bulk specimens in the mm to cm range have been tested using established standardized methods. This breakthrough was made possible by combining the use of the fastest commercially available 2PP 3D-printer (NanoOne) with resins that can be processed at very high volumetric build rates, enabling upscaling. The test results, now published in "Advanced Materials", demonstrate the superior material quality of the UpPhoto and UpDraft resins compared to an acrylate resin (ETA/TTA). In addition, both materials are fully cured immediately after printing, eliminating the need for post-treatment. A multinational collaboration involving researchers from Technical University Vienna (TU Wien), California Institute of Technology (Caltech) and the RWTH Aachen University, along with materials experts from UpNano GmbH conducted the comprehensive study.
Exceptional Versatile & Innovative Printing-System Successfully Established in Both, Industry and Academia
UpNano printers and resins for macroscopic test specimens. Superior properties compared to conventional resin-based 3D printing. Vienna, Austria, 22 February 2024 – For the first time, mechanical properties of 2PP 3D-fabricated bulk specimens in the mm to cm range have been tested using established standardized methods. This breakthrough was made possible by combining the use of the fastest commercially available 2PP 3D-printer (NanoOne) with resins that can be processed at very high volumetric build rates, enabling upscaling. The test results, now published in "Advanced Materials", demonstrate the superior material quality of the UpPhoto and UpDraft resins compared to an acrylate resin (ETA/TTA). In addition, both materials are fully cured immediately after printing, eliminating the need for post-treatment. A multinational collaboration involving researchers from Technical University Vienna (TU Wien), California Institute of Technology (Caltech) and the RWTH Aachen University, along with materials experts from UpNano GmbH conducted the comprehensive study.
More Laser Power Allows Faster Production of Ultra-Precise Polymeric Parts Across 12 Orders of Magnitude
UpNano printers and resins for macroscopic test specimens. Superior properties compared to conventional resin-based 3D printing. Vienna, Austria, 22 February 2024 – For the first time, mechanical properties of 2PP 3D-fabricated bulk specimens in the mm to cm range have been tested using established standardized methods. This breakthrough was made possible by combining the use of the fastest commercially available 2PP 3D-printer (NanoOne) with resins that can be processed at very high volumetric build rates, enabling upscaling. The test results, now published in "Advanced Materials", demonstrate the superior material quality of the UpPhoto and UpDraft resins compared to an acrylate resin (ETA/TTA). In addition, both materials are fully cured immediately after printing, eliminating the need for post-treatment. A multinational collaboration involving researchers from Technical University Vienna (TU Wien), California Institute of Technology (Caltech) and the RWTH Aachen University, along with materials experts from UpNano GmbH conducted the comprehensive study.
Breakthrough by Material Characterization According to ISO
UpNano printers and resins for macroscopic test specimens. Superior properties compared to conventional resin-based 3D printing. Vienna, Austria, 22 February 2024 – For the first time, mechanical properties of 2PP 3D-fabricated bulk specimens in the mm to cm range have been tested using established standardized methods. This breakthrough was made possible by combining the use of the fastest commercially available 2PP 3D-printer (NanoOne) with resins that can be processed at very high volumetric build rates, enabling upscaling. The test results, now published in "Advanced Materials", demonstrate the superior material quality of the UpPhoto and UpDraft resins compared to an acrylate resin (ETA/TTA). In addition, both materials are fully cured immediately after printing, eliminating the need for post-treatment. A multinational collaboration involving researchers from Technical University Vienna (TU Wien), California Institute of Technology (Caltech) and the RWTH Aachen University, along with materials experts from UpNano GmbH conducted the comprehensive study.